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Abstract. Three neural network training algorithm are presented which are robust to non- 
learnable problems. The first algorithm converges to the Gardner stability limit if the learning 
problem i s  linearly separable. and otherwise finds a l o d y  maxin@ly stable solution. 

The s a n d  algorithm is a robust version of Rosenblan's perceptran learning algorithm 
which will converge to a solution of the leaming prvblem if one exists, and orhenvise will 
converge I d l y  to a solution with a certaio fraction of wrongly mapped patterns. 

The third algorithm is suited most favowably to unleamable problems: it will always find 
a solution if the problem is learnable q d  allenvise it locally maximizes the number of patferns 
which are stored correcrly. The war rate of this algorithm and other known algorithms for 
unlearnable problems are'compamd for two benchmark problems. 

Proofs of the existence of solutions are given. Convergence is proven as well to be global 
in the case of learnable and local in unlearnable cases. 

1. Introduction 

By now standard training algorithms in perceptrons like Rosenblatt's algorithm [ 111, or 
refined versions Lie Krauth and Mezard's minover algorithm [8], Anlauf and Biehl's 
AdaTron [2] and the generalization of these algorithms to problems with adjustable threshold 
[I41 only converge if the problem is learnable, i.e. linearly separable. The same holds for 
improved example selection 171 01 Rujan's algebraic methods that use active sets [12]. 
In order to overcome this problem, various approaches for training unlearnable problems 
have been used. Early methods use cost functions like least mean square (LMS) [16] or 
cross-entropy [6], however these cost functions are not designed to maximize the number 
of correctly stored patterns. Annealing is utilized in the works of Rujan [13] and Frean [4]. 
Nabutovsky and Domany [lo] have presented a method that detecis unlearnable problems. 
Gallant [5] stores a faithful set of weights until they are replaced by a better one in further 
training, this procedure can be shown to maximize in probability the number of stored 
examples but can take a very long time to converge. 

It would be desirable to have modified algorithms that manage to exhibit the properties of 
their predecessors but converge as well, even if the problem is u n l e a d l e .  In the latter case, 
a suitable measure for the leaming error must be found and minimized. These algorithms 
should be local and should not include computationally or time expensive schemes like 
complicated algebraic calculations, annealing procedures or the storage of an intermediate 
set of weights. 
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Such algorithms will have the advantage of guaranteed convergence and therefore 
applicability to any kind of problems without prior or online inspection of the feasibility of 
a solution. 

The algorithms presented here satisfy these demands. 

2. The problem 

The given problem then is to find an N-dimensional perceptron vector J such that for 
a given set of N-dimensional pattems [&, . . . , cp)  and corresponding outputs ('targets') 
{ r ~ ,  ..., r , J ( ~ , ~ R ~ ; ~ ~ ~ ~ ~ = N V ~ ; + ~ ~ { ~ I ) ) t h e e q u a t i o n s  

are either, if a solution exists, satisfied, or if no solution exists, a solution is found 
which, though not satisfying equation (l), is locally stable. The algorithms presented here 
are designed in such a way that without inspection of the feasibility of the solution of 
equation (l), the convergence is either global in the feasible or local in the unfeasible case. 
Therefore the algorithms can simply be run on the given problem, their result after learning 
will then show whether the given problem was feasible or not. This feature of the algorithms 
will be called robustness. 

r, = sign(J .<,) = 1. . . p  (1) 

3. Making the updates robust 

Making the algorithms robust means modifying them such that they will converge even if 
the training problem is not solvable. The idea is derived from the spirit of Rosenblatt's 
perceptron algorithm or Krauth and Mezard's minover algorithm 181. In these algorithms, at 
every step an unstabilized pattern is added to the perceptron vector J .  The algorithms can 
be interpreted geometrically: at every iteration step, the perceptron vector J is turned into 
the direction of the unstabilized pattem. By feasibility of the solution, this simultaneously 
increases the norm of J .  The effect of this increase of the norm is a decrease of the turning 
angle and therefore a self-adjustment of the stepsize in the geomehic positioning of J ,  or in 
other words, a dynamic decrease of the gain parameter. In the minimal-overlap algorithm of 
Krauth and Me&, this leads to guaranteed convergence to the maximally stable solution 
after an infinite number of time steps. In Rosenblatt's perceptron algorithm, after a finite 
number of steps a solution will be found. 

However this convergence can only be proven for feasible problems, in the case of 
unfeasibility these algorithms fail completely. In the following, algorithms will therefore 
be modified in a certain fashion such that the two feakes of turning J and increasing 
the norm are maintained even in the unfeasible case. It will be shown that this suffices to 
establish convergence of the algorithms. 

The main idea is as follows. Let up := r&. Instead of adding the pattem u"/N 
used for updating, one adds to the perceptron vector J a vector T/N with T = aJ + bu" 
(a, b > 0) but such that the overlap J . T is non-negative and such that T has a bounded 
norm. The norm of J will then always be increased by this procedure, as demanded. 

These conditions are met by 

(2) 

with the following conditions: 0 < x ( u * ;  J )  < x', J . r > 0, and for large 1.71, 
J T < IA11J1 where A is the maximum stability introduced in the following section. It is 
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noted that this condition suffices for the formal convergence proof for learnable problems 
which is presented later. However. A is normally not known a priori and in this case the 
stronger condition VAg < 0 : ( J  . rg/lJI) -+ 0 may be imposed. Further, x must be such 
that for [U*. JI # lu*IIJI, J .  T > 0 since otherwise the algorithm may be trapped into a 
halt. 

A suitable choice for x will be given. Obviously, the bounds on x and J . T = 
J . & + x f i l J I  = 1 JIf i (cos(J ,  U*) i- x )  > 0 immediately require 

x ( u * ;  J )  > max {o, -cos(J, U * ) } .  (3) 

Further, lrl is bounded by lrl < R =,/-which for x* = U(1) has the same 
scaling as the conventional update U*. 

Under these conditions, one can first show that the desired algorithmic features are 
actually obtained. Let us suppose that learning is started with where yo is the angle 
~(Jo; U).  Jo will be updated by vectors T which derive from U. If yo = R, T is not defined 
which can always be restored by an arbitrarily small distortion of Jo. It is desired that after 
M learning steps, the angle ( J ;  U) < y* > 0 where y* is any predefined angle and U can 
be a pattern or a combination of patterns. The required total turning angle will always be 
less than iz. We are going to show that these conditions can always be matched after a 
finite number of M steps. 

First, observe that after f steps have been taken, 1.71 has not decreased since always 
J .  T > 0. It has grown at most as IJI < IJo) + tJrI- Suppose +e angle y* cannot be 
reached. Then we have 0 e D- < ( J  . r)/lJI < 4, < lrl. These bounds establish that 
there exists a vector sI which is the component of r, perpendicular to Jr, pointing into the 
direction of U. Further, the length of st will be bounded from below by sfin > 0 for all t .  
Then it follows also that 1.7'1 will grow infinitely at least as IJ'I' 2 lJolz + ts;.. 

The angle y, by which Jr is turned at step t into the direction of U is then yr 2 
arctan(sfin/(lP' + tlrlma)). After M steps, we obtain 

M M 
YM = CYr > CarCtan(Sri./(lJ01 +tlrlm!x)) 

t=1 t=l 

> lMdtarc tan(s~n/ ( l JO[  +TITI,)) M + large o( ln(M) M-m + 00. 

This shows that y~ is unbounded, therefore J will be tumed by any required angle. 
This contradicts the assumption that the total turning angle yo - y* cannot be reached and 
establishes that M is finite which completes the proof. 

Additionally, since lrl is bounded, we also have Ist/ 6 Irl-. Then yr < 
arctan(lrl,/lJ,I).. With increasing 1.71, y, is then going to be decreasing in the course of 
learning. This allows for arbitrarily small update angles if this should become necessary in 
the course of the algorithm. We shall make use of this property later. 

In summary, we have shown so far that the presented updates will get J arbitrarily close 
to any desired direction. We shall now indicate directions which are desirable and define 
algorithms which converge to these directions. Before this is done, a choice of suitable x 
for practical problems will be given. . .  

. ,  

4. ,A, suitable choice  for^ & . . , , . 
.. , . 

A basic guess for x is a constant, xo = 1, which satisfies equation (3) but does not satisfy 
for large 1.71, J - T  < IA1151 for any A. Therefore a much finer tuned choice for x is 
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required which is favourably matched by the following: 

IJ"'I > n 

i.e. 

Note that chis does not impose further computational effort: in any algorithm, the 
quantity U(') would have to be computed anyway to find out whether the pattern must 
be used for updating or not, and J: must be computed in both formulations (2) and (4).  
The latter is in fact the only quantity that has to be computed additionally if compared to 
the non-robust algorithms, this is just one dot product in addition to the U ( p )  ones needed 
to locate a yet unstabilized pattern. 

Let us give further results using the following notation: 

J.u 2 = &COS (A U,) = A,  
I J I  
5 = Ir,l cos (J; f,) = D, 

I J I  
1.71 = U N .  (7) 

We have ]A,] < and 0 < Dp S ~ J m .  It is convenient to start updates with 
lJol = O ( N )  since then the quantities a ,  AN and D, will usually be of order O(1). The 
features required earlier can now be verified. We obtain for A, c 0 

I - A ; / N  
O < D  - '- a 4a2N a - A,/N 

where lrl= D, = 0 only for la*IIJ[ = -U* * J .  For A,  > 0 one obtains x = 0, D, = A,, 
1 ~ 1 ~  = N .  This together with equations (8) meet the requirements set earlier in equation (2). 
The quantities D, and / T I  are of the same order as their counterparts Au and IuI. 

Let us now turn to the definitions and convergence proofs of algorithms. 

5. Maximum stability 

One possible objective for a convergence point of an algorithm is a direction of maximum 
stability, the definition of which can be given by equation (1). 

If the problem is learnable, several algorithms exist which solve it 12, 8, 12, 141. In 
a geometric context, equations (1) ask for a plane through the origin separating the points 
fw into two classes with positive and negative output. The distances of the points from the 
plane are given by 

(9) A,  = i ~ i - y ~ ~ ,  E, j (fi  = 1.. . p ) .  
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The sign of A,, is positive if e,, lies on its class's side of the plane.  for a correct 
classification, A,, > OWp), implying that equations (1) are satisfied. If this is the case, 
there will be a gap between the two classes of outputs. Using the two minimal distances in 
the respective classes of pattems, the size of this gap is min,=I A,, + min,,,-I A,,. 

Optimal separation is achieved if the gap size between the two classes of patterns is 
maximized. Note that this definition holds as well for the case of unlearnable problems. 
Then the gap size is negative, and the optimal solution will still be defined as the solution 
with maximal gap size. 

The minimum distance of any g,, to the plane is the measure of stability: 

Thus the perceptron of optimal stability is (J') such &at 

The following minimal overlap algorithm aims at maximizing the gap size between the 
two output clusters, even if the gap is negative. It is immediately noted that in the negative 
stability regime, the number of pattems stabilized under this concept is far from maximal. 
If a high number of stabilized patterns is desired, the third algorithm presented in this paper 
will be useful. 

The algorithm starts in the space of vectors cr, := r&,, with J(*) = JH0pfie'* = 
xi=, U,,. This is the only and best choice one can make with no prior knowledge about 
the pattern distribution. First of all, the Hopfield vector is normalized to length N. Then at 
any iteration step t the algorithm proceeds as follows. 

Algorithm 1. Minimal overlap. 
Let the quantity u(r) be given by 
If~lJ(')I < c (c = some fixed positive number) 

. U(') = min, (J"' . uW}. 

.~ then 
1 
N 

J"+" = J W  + -rP(r) 

else 
stop (after f = M steps). 

r is taken from equation (2), or (4) as a special~choice. 

The stability obtained is then Ac = .IcM) . ~ r ( ~ ) / l J ( ~ ) l .  . .r c + CO, algori 
approach a local maximum of A with any required accuracy, in the case of A 
maximum is global. 

n 1 will 
0, this 

The proof of this algorithm is deferred to the appendix. 
In summary, for A > 0 it will always converge to the only (global) stability maximum, 

otherwise it will converge to a local maximum. The advantage is that previous knowledge 
about positiveness of A is not necessary but can be read off after termination of the 
algorithm. 

5.1. Robust perceptmn algorithm 

Here. we will present a robust version of Rosenblatt's perceptron algorithm [I 11 which can 
be stated immediately for any given desired stability value K .  
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Again, the algorithm starts in the space of vectors U# := T,,& with J ( O )  = JHaF'ae'd = 
E,=, P up, n o r m a l i i  to length N. Then at any iteration step t the algorithm proceeds as 
follows. 

Algorithm 2. Robust perception. 
If (IJ(')I < c) (c = some fixed positive number) and if (A(') = (J(*) . u('))/lJ(')l < K) can 
be satisfied for some pattem up 

then 
choose randomly any e(') with A(')' <: K and 

else 
stop (after t = M steps). 

T is taken from equation (2). or (4) as a special' choice. 

As in the previous case, the stop condition can always be met since either the algorithm 
will terminate for A# t K (Vfi) and A >, 0, or IJ(')I will be infinitely growing, as shown 
beforet. 

The convergence proof is in two parts, one for the case of A z K and A > 0, the other 
one for A 6 K or A < 0. It is presented in the appendix. 

In summary, for the cases where convergence is global, there will be one global 
minimum which the algorithm converges to. Otherwise, local fixed points exist which 
the algorithm will converge-to. These are however just marginally stable, and macroscopic 
jumps of J away from them will occur. 

5.2. High number of stabilized pattems 

The following algorithm aims at maximizing the number of stabilized patterns. This is 
associated with a Gardner-Demda cost function [9]. A high number of stabilized patterns 
will for example be useful if one is 'only' interested in learning, or if the pattems are noisy 
and therefore unreliable. Since this is the most interesting case for unrealizable problems, we 
will compare the performance of this algorithm and other known algorithms for unlearnable 
problems in numerical simulations for two benchmark problems introduced by Frean [4]. 

Finding the maximum number of stabilized pattems in the unfeasible case has been 
shown [l] to be  co complete. Therefore we are facing a very hard problem here, the 
algorithm will however he able to maximize this number locally. For feasible problems, all 
pattems will be stored but the results will be otherwise suboptimal. It is therefore advisable 
to start running the first algorithm to find out whether the problem can be solved. If not, 
one continues with the iteration presented now. 

u.,)/(J(z)[ z K. For unlearnable problems, 
maximizing the number of stabilized pattems means that a subset of patterns will be allowed 
to have very low (negative) stabilities. One does not aim at using these pattems for training. 
Instead one uses at any iteration step the one incorrectly mapped pattern with stability closesr 
to K. In this fashion, one arrives at the following algorithm. 

As before, the algorithm starts in the space of vectors up := tN<, with Jt0) = 
JHWficld = E$=, U#, normalized to length N. Then at any iteration step t the algorithm 
proceeds as follows. 

Algorithm 3. Gardner-Derriah 

A pattern is regarded as stabilized if 

t In passing we note that in che case of A > K and A 2 0. if can be shown chat LT might be raken instead of P. 
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If ((J(')I < c) (c = some fixed positive number) and if (A(') = (J")  . u('))/lJ(')I < K) can 
be satisfied for some pattern U* 

then 
let the quantity U(') be given by 
J('! . U(') = max,{J") . UJ(J(') . c r p ) / l ~ ( ' ) l  < K) and 
update J('+l! = J ( c )  + -T(') 

1 
N 

else 
stop (after t = M steps). 

T is taken from equation (2), or (4) as a special choice. 

With increasing c, the algorithm converges to a fixed direction J*/IJ*I. 
The convergence proof is again deferred to the appendix. 
The algorithm will stabilize all patterns for problems with A z K and A > 0. Otherwise, 

it will locally converge to a fixed point which locally maximizes the number of stabilized 
patterns. The distribution of stabilities will then have a gap below K and a &function of 
stabilized patterns at K. 

Since a high number of stabilized patterns is usually regarded as the key quality figure 
if the problem is unlearnable, we will in the following investigate two benchmark problems 
introduced by Frean [4]. Further results for the full stability distributions of all three 
algorithms presented here are published elsewhere (see outlook). 

The first problem we consider is to maximize the number of correctly assigned binary 
patterns which are randomly targeted. As in [4], we take all 1024 binary patterns in 
10 dimensions and assign to each of them a binary targct with equal probability. This is 
clearly a highly non-separable problem. It is attacked with the algorithm in this chapter, and 
compared to five of the above-mentioned methods: the least mean square (LMS) algorithm 
1161, the cross-entropy algorithm [6], Frean's thermal perceptron [4] and Gallant's [5] pocket 
algorithm as well as his pocket and ratchet algorithm. Data for the performance of these 
algorithms is taken from [4]. The result one obtains is as shown in table 1 

Table 1. The randomly targeted binary panerns problem for 1024 panems in 10 dimensions. 
Data other than for this algorithm after [4]. Far all algorithms. the data is the mean of 1000 
independent trials. and standard deviations a~ of'the order of 0.02. 

Algorithm Pmpoaion of correctly mapped panems 

Pocket algorithm 0.515 
LMS 0.542 
Cross-entropy 0.542 
Pocket and mchet 0.546 
T h e d  perceptron (no annealing, best srarting temperature) 0548 
Algorithm 3 (Gardner-Denida) 0.569 
Thermal perceptmn (a and T annealed, best staning temperature) 0,572 

Clearly, algorithm 3 presented in this section is just slightly worse than the best of 
the other algorithms, the optimal thermal perceptron. However, that one requires a great 
number of trials to obtain the best starting temperature, as well as a delicately tuned update 
scheme for the annealing of two parameters; Therefore, with a small loss in accuracy, the 
algorithm presented in this section is conceptually much simpler and requires much less 
training time. 

As a second problem introduced in [4], we investigate a problem with outliers. Again, 
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35 I l l  I t  I l l l l  
o Gardner-Derrida 

," 30 - thermal Perc. 

* 
0 

0 1 2  3 4 5 6 7 8 9 1011 
Number of outliers 

" 
0 1 2  3 4 5 6 7 8 9 1011 

Number of outliers 

Figure 1. Training set with outlien. 
Number of errors after 100 epochs against 
number of outliers for various algorithms. 
10% linearly separable binary targets in 
10 dimensions have 10 be sfabilhd as 
well. The algorithm presented here achieves 
less mors than ouaen throughout, and 
outperfom the other algorithms. 

all 1024 binary patterns in 10 dimensions are used. They are assigned a binary target given 
by a randomly generated perceptron such that the output bias is 0. Therefore the problem is 
clearly linearly separable. Now a number of n outliers is produced by randomly selecting 
n pattems and reversing their output. A good learning rule should then produce mt more 
than n errors: the number of errors can actually be less than n for a very good algorithm 
that manages to stabilize even a fraction of the outliers. 

The result of this problem is shown in figure 1. It is again compared to the other above- 
mentioned algorithms. Data for the performance of these algorithms is taken from [4]. 
Consistently, algorithm 3, presented in this section (Gardner-Denida), outperforms all the 
other methods on much less computational and conceptual effort. It also actually manages 
to produce less than n errors. 

In summary, we have presented an algorithm that achieves a high number of stabilized 
patterns. Comparisons to other much more complex algorithms on benchmark problems 
have verified that the new method is of equal or superior performance. 

6. Outlook 

Three training algorithms have been presented which are robust to infeasible problems. No 
prior inspection of feasibility is necessary. The algorithms converge to (local) maximum 
stability, to a robust Rosenblatt solution and to a solution with a locally maximized number 
of stabilized pattems. 

It is desirable to quantify the stability distributions reached by fhese three algorithms 
especially in the case of infeasible problems. In this context, in a recent paper [9], 
calculations have been performed which for random unbiased distributions of a large number 
of pattems in many dimensions give results for the stability distributions, using cost functions 
that correspond to the performance of the three algorithms presented here. In a forthcoming 
paper [15], results of large-scale simulations with these three algorithms will be presented 
and compared to the results in [9]. 
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Appendix A. Maximum stability 

We prove here the convergence of the maximum-stability algorithm. This will be done 
largely using results from optimization theory, the proofs of which can be found, for 
example, in [3]. 

The optimization problem is stated in equation (11) but can equivalently be stated as 

I#V) with angle (J; u,J < vVd (AI) 

or as 

min (-A) with J . up > A W ~ ) ;  J2 = 1. . ('43 
IJl 

The latter is a linear optimization problem in N dimensions with one quadratic equality 
and p linear inequality constraints. For p < N ,  there will always be a solution. The 
quadratic constraint establishes a nonlinearity from which it already follows that the number 
of acrive constraints, i.e. those obeyed with equality, cannot be larger than min(p, N). To 
see the structure of the solutions more clearly, equation (A2) can be rewritten into the 
following quadratic optimization problems in the standard form of optimization theory: 

for A > 0 : min(JZ) with J.u, > 1 (Vp) 
1 4  

for A 6 0 : min (-Jz) with J . up > -1 W p ) .  (A4) 

For the last two equations, the following theorems from optimization theory can be 
stated. The optimal vector J' is going to be obtained as a pseudoinverse solution (see e.g. 
[3, 141) from an active set with a elements, 2 < a 6 min(p, N ) .  The other constraints 
are satisfied not with equality. The optimal vector J* has equal overlap to all patterns in 
the active set. Regarding the two parts of the solution, in equation (A3) the cost function 
is shictly convex which guarantees that a solution exists which is unique and which is a 
global minimum. In equation (A4), the cost function is strictly concave but the area defined 
by the inequality constraints is closed. Then more than one solution exists which minimizes 
the cost function locally. The global minimum can only be found upon inspection of all the 
local minima.. 

In general, we therefore have to identify the active set which generates the solution. 
Well known active-set search techniques (cf [3]) can be applied for that purpose. We can 
start anywhere in J-space since equation (A2) will always be obeyed with A = -m. We 
will find a local minimum which in the case of A > 0 will automatically be the global 
minimum. This is advantageous since we do not h o w  beforehand whether A z 0 or not, 
thus an algorithm designed according to the active-set search techniques will not require us 
to have this knowledge. 

In the following, it will be shown that the routes in J-space taken by the algorithm and 
by the active-set search technique are identical. As an illustration, refer to figure Al.  

{ J l  
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7 
X Q  

Figure AI. Paths of active set method ( J l  - J4) ,  and minover 
algorithm ( m w s ) .  Minover steps are drawn schemsdcally. 
At J ' .  the active set is A = (11, at J2, it is A = ( l ,2) ,  at 
J', it is A = ( I ,  2.3). J 3  is also the pseudoinverse solution 
(centre of the circle given by a', a'. u3.) J 3  is unstable, 
therefore pattem 2 is removed from the active set, and at J', 
it is A = (1.3). Jb is again the pseudoinverse solntion (centre 
of the line given by d. u3). Being stable, Jd is the optimal 
solution. Note that minow flips between directions @en by 
the active patterns. However, since the contribution of panem 
2 to J 3  cannot be removed, J4 is approached on a zig-zagging 
path. 

The activeset search technique [3] is described as follows: at every step, a feasible 
movement is taken which aims at minimizing the cost function. This can be demonstrated 
for the original equation (AI), which is also the way our algorithm proceeds. At the start, 
some pattern oV will have the maximum angle (Jo; a,) and therefore constitute the cost 
function. Turning J towards this panem will minimize the cost function further until another 
pattern p becomes active, such that the optimization problem in the following is constituted 
by panerns v and p .  This is dealt with by turning J into the direction of the bisection or 
pseudoinverse of patterns U and p which again will minimize the cost function further until 
yet another pattern becomes active. The process is iterated, moving towards the direction 
of pseudoinverses of the assembled patterns in the active set as long as the process will not 
terminate in the last pseudoinverse found. 

Convergence of the minimal overlap algorithm can now be proven on four observations. 
(i) The turning directions that the algorithm takes follow exactly the prescriptions of 

the active-set search technique. Movements into the prescribed directions me mimicked 
iteratively by alternately turning towards the pattems of the current active set. Reaching 
a candidate for a termination point, the algorithm takes small movements away from this 
point into any of the directions of patterns in the active set and thereby checks stability as 
prescribed. Should one of the pattems have to be removed from the active set, the algorithm 
will continue moving towards the patterns remaining in the active set. It then continues 
searching into a direction which has equal overlap to all of these pattems which again is a 
mimicry of the direction of the prescribed reduced pseudoinverse. 

(ii) As previously shown, any required turning angle can be achieved. 
(iii) The mimicry described in (i) will be performed to any required accuracy in the 

course of the algorithm. This is due to the previously shown result that update angles will 
become arbitrarily small. Should in early stages of the algorithm the updates be too coarse, 
this may at worst lead to a new path selecting a different local minimum than previously. 
However, since the accuracy is constantly increasing, this possibility will be ruled out as 
well in the course of the algorithm. 

(iv) The algorithm will terminate with some accuracy in the vicinity of the minimum 
J* which is a pseudoinverse of, at most, N* = min(p, N) pattems. The worst deviation 
from this solution that the algorithm can perform without minimizing the cost function 
again is N*]T[,,,= in the perpendicular direction from the solution. Then the angle 
(J'; J*) 6 arctan(N*)TI,,/)J'I) '2% since IJ'I is infinitely growing. Therefore the 
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solution will be approximated with any required accuracy after a finite number of steps. 
This completes the proof of the minimal overlap algorithm. 

Appendix B. Robust perceptron algorithm 

The convergence proof for the robust perceptron algorithm can be started in~the case that 
A > K and A 2 0. In this case convergence is global. The case 0 > A > K converges 
globally only in the case where the stating vector happens to be in the basin of attraction 
of a local minimum J' with A(J') > K .  Therefore in general, convergence in this case can 
be local. 

The proof is in parts motivated by the method introduced in [I I]. We note that by 
feasibility there exists a vector J* which solves the problem with maximal stability A and 
observe that 

This equation can be iterated to give 

(B2) 
The last inequality is true since x > 0 and we start the algori&m with A y  vector 
J(" = CU,U, with non-negative U, which gives J" . Jco) > 0. 

Furthermore, as long as updates have not finished, J . U c K ( J ( .  Since K e A, $is 
guaranteest for a large number of time steps J . r < AI JI. Together with lrl < R and 
equation (B2) we obtain 

A 
N 

at-.  

2 4 1  Jtl Rz 
N 2  

J Z  -J2+-Jr . r+-r2<J~+-  1 f -  
2 

N 2  N f + l  - f N 

We iterate this equation: 

Combining equations (B2) and (B4) we obtain 

t If it were x > A, the algorithm would pick up patterns with 0 c At c K in which case xt = 0 and the limit for 
a large~number of time stepswould be J . T, = J ' U, c K I  JI, failing the convergence proof memod presented 
here. 
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We show now that this condition cannot be satisfied, hence learning must stop. To this end, 
we evaluate the convergence behaviour of the series for large t. Due to Cauchy's criterion, 
this can he done by replacing the sum by an integral, keeping only the dominant terms: 

max'Osl ds f + 0 ($) -+ In ( t )  . 20,  R2 
I n ( t ) < - C l n  2 ,=I ( I+--+ SA -)' s2Az A A 

036) 
Since max(D,]/A < 1, equation (86) cannot be observed, which completes the proof for 
A > K and A > 0. 

c. Let us prove local 
convergence for sufficiently large c. First of all, a fixed point Jf  of the algorithm is derived 
from equation (12). Since any one of the pattems used for update is picked randomly with 
the same probability, we obtain (d = constant) 

For A Q K or A c 0 the algorithm will stop only since (J(')I 

Let us first of all show that such a fixed point exists. The proof is by iterative 
construction. We will regard the equation 

J, = JAJ) = - C[cslangle(& up) Y] (Bg) 
P 

and show that there exists a vector J such that J, = dJ which satisfies equation (B7). 
Begin by picking any Jo  and compute J:(Jo) from equation (B8). If J: = d p  then 

the fixed point is found. If not, then define a circle about the origin in the (J,"; Jo)-plane 
and a forward direction on the circle such that tuming Jo  towards J," is a forward tum, and 
define the angle (J,"; Jo) = ,6. 

Now perform on this circle a small forward turn S,6 of Jo.  This will also turn the 
boundaries defined at an angle y from Jo. If during that turn the boundaries do not pass 
through a pattem, J," remains at its position which decreases ,6 to ,6 -Sp. Since the pattems 
occupy discrete positions, this is always possible other than for discrete locations on the 
circle. 

Further, perform on the circle a 360" forward tum of J ,  starting at p. Any time 
the boundaries pass through a pattem, J, will be shifted by -U,, if the pattern enters the 
y-area, and by up if the pattem leaves the y-area. However, after a full circle, every 
pattern will have entered and left the y-area exactly once such the total shift induced on 
J," by the pattems is zero. Having retumed to the starting position, ,!3 is recovered as well. 
The total change of f l  being zero, we observe that since we initially decreased ,6 in the 
forward movement there must be other parts in the turn with no patterns passing through 
the boundaries where p was increased. This, however, is only possible if the projection of 
J. on the circle plane was in a backward position of J in these parts. Therefore there must 
be a position 5, on the circle and a corresponding JJ where the projection of J,' on the 
circle plane is passing from the forward to backward position of 51. If Ji at this position 
has no component perpendicular to the circle plane, the desired fixed point is found. Of 
course this is always hue if N = 2. 

Note that this may happen while a pattern passes through a boundary as well. In this 
case, we must allow for this pattern to be with one fraction on one side of the boundary 
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and with the remaining fraction on the other. In this fashion, we will be able to move 
'continuously' through a pattem. 

Let us now look at three dimensions and define a new path on a three-dimensional shell. 
We start at JI and move an infinitesimal step in a direction such~that the angle (51; J j )  
is reduced. This tilts the initial (J;; Jo)-plane slightly. On this new plane, perform the 
same procedure as described above. Since the move is continuous in the above sense, the 
position of J1 will also move continuously. This defines an initial gradient for the position 
of J1. Follow that gradient, keeping perpendicular to it the grand circles which define the 
positions of Jl .  In this fashion, a closed path Jz on the threedimensional shell is defined 
where at every position the projection of J," on the circle plane equals Jz. 

Consider the start of the Jz-movement as moving forward. By the very same arguments 
as above, there must then be a point on this path where the projection of 520 on the shell 
changes from forward to backward-it is on the shell since by construction on the path 
J2 as well as on the underlying grand circles, the projection changes from forward to 
backward. This procedure can be used again as a subroutine for dimension four, etc. If the 
full dimensionality of the problem is reached, a fixed point is found. 

After these considerations, the fixed point is accurately given as 

Jf = - ~ { ~ ~ l a n g ~ e ( ~ ~ ; a , , ) >  y ] - C ( ~ , a , , ~ a n g l e ( ~ f ; a , , ) = y ; ~ < ~ , ,  c 11 
P ,, 

Let us now look at the stability of such fixed points. 
(i) If at the fixed point no pattern is situated on the boundary it follows immediately 

from equations (12) and (B7) that after a small distortion, the algorithm will move away 
from the fixed point and is therefore unstable. 

(ii) If a pattern is situated on the boundary, we can consider a distoaion without change 
of the position of J which adds or  subtracts a fraction of the weight of this pattern in 
the y-area. Both will induce a macroscopic move of J., inducing J to move back to the 
original position. Since distortions of type (i) perpendicular to this boundary pattern will 
not be stabilized, the y-area has to be bounded by N boundary patterns, in such a fashion 
that all directions are stabilized, to guarantee stability. 

It is important to notice that in the actual algorithm, patterns can obviously not be 
split. Therefore J. will always perform macroscopic jumps away from boundary patterns. 
This may move J away from the locally stable fixed point altogether. Further, stability 
relies on a very large I JI to ensure quasi-continuity of the movements taken by J and a 
quasi-homogenous frequency of non-stabilized patterns used for updating. 

Appendix C. High number of stabilized patterns 

The convergence proof in the case of feasible problems is identical to the robust perceptmn 
proof and therefore need not be considered. 

If the problem is infeasible, we have A c K .  We must again inspect the existence and 
stability of a fixed point. This can be given by construction. Since IJI is infinitely growing, 
we can regard arbitrarily small updates. 

Updates are performed with pattern CY~J") . U, = max, (Jm . a,l(J(" * o,,)/lJ("I) 
< K .  The perceptron vector J will be turned towards u.. As long as no other patterns 
cross the stability boundary A,, = K ,  updates will continue with this same pattern cr, until 
it is stabilized. The process continues then with the next pattern. In this fashion, one 
unstabilized pattern after another will be stabilized, which locally maximizes the number of 
stabilized patterns, as required. 
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However, this process cannot continue forever since the problem is infeasible. In 
the course of tuming J towards the respective patterns, another pattern ,4 which was 
formerly stabilized will eventually cross the stability boundary in the opposite direction 
and become unstabilized. As soon as this happens, this pattern now satisfies the condition 
J") . u b  = max,{J(') . u,l(J(') . CY~)/IJ(')I < K )  and is immediately stabilized again. 
Taking discrete steps, the algorithm will therefore alternate between patterns a and 8. This 
amounts to a turning of the hypercone J .U = K around the direction ub. In other words, 
the movement of the hypercone is fixed in one direction. 

Continuing with the updates, the movements hypercone will be fixed in an increasing 
number of directions. 'This process converges to a fixed point where the hypercone is 
completely fixed, i.e. any small deviation from this fixed point leads to one pattern becoming 
unstabilized again. Therefore this fixed point is a pseudoinverse with J . U = K which is 
locally stable. 

For this process, it is unimportant where the patterns U, with J . CY, <: J . ua are 
located. The ignorance of these pattems and the stabilization of a limited set of pattems, 
which at termination at the boundary has increased stability, leads to, a gap between the sets 
of stabilized and unstabilized pattems. 

This completes the convergence proof of the algorithm for a high number of stabilized 
patterns. 
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